
Created by Kaj Bonfils, www.kajbonfils.com 2016-05-18.
Details taken from: https://github.com/pester/Pester/wiki

PESTER CHEAT SHEET

Creating a test fixture
Syntax
New-Fixture –path –name
Generates two scripts, one that defines a function and another one that
contains its tests.
-path: The path where the scripts are created
-name: The name of the scripts
Example
New-Fixture –path c:\myScript –name Deploy
This generates Deploy.ps1 and Deploy.Tests.ps1, both in c:\myscript

Executing test

Syntax
Invoke-Pester –testname –strict -tag
Executes tests and provide output to the console.
-testname The name of the describe block to test
-strict All tests will either pass or fail. No inconclusive tests
-tag Comma separated list of test tags. See “Describe”
Example
Invoke-Pester –testname “MyContext” –tag Unit,
Integration -strict
See more parameters in the wiki

Invoke-Pester .\ script.Tests.ps1 -CodeCoverage
.\script.ps1

Test structure

Describe – Context –It
The general structure of a Pester test is following this syntax:
Describe “MyDescription” –tag “MyTag” {
 Context “MyContext” {
 It “MyContext” {
 $false | should be $true
 }
 }
}

Describe:
 -tag Tags can be used to group the tests.
It :

 -skip Skips the test
 -pending The test is not finished so result is not reliable.

Assertion with Should

Be
Not case sensitive.
“FOO” | Should Be “foo” #pass

BeExactly
Case sensitive.
“FOO” | Should Be “FOO” #pass
“FOO” | Should Be “foo” #fail

Exist
Checks if the object is present in a PS Provider.
$actual=(Dir .)[0].FullName
Remove-Item $actual
$actual | Should Exist # Fail

Contain
Checks if a file contains a text. Not case sensitive. Uses RegEx
Set-Content -Path TestDrive:\file.txt -Value 'I am a
file'

'TestDrive:\file.txt' | Should Contain 'I Am' # Pass

'TestDrive:\file.txt' | Should Contain '^I.*file$' #
Pass

'TestDrive:\file.txt' | Should Contain 'I Am Not'
#Fail

ContainExactly
Checks if a file contains a text. Case sensitive. Uses RegEx
Set-Content -Path TestDrive:\file.txt -Value 'I am a
file.'

'TestDrive:\file.txt' | Should ContainExactly 'I am'
Pass

'TestDrive:\file.txt' | Should ContainExactly 'I Am'
Fail

Match
Uses a RegEx to compare. Not Case Sensitive
"I am a value" | Should Match "I Am" # Pass
"I am a value" | Should Match "I am a bad person" #
Fail

MatchExactly
Uses a RegEx to compare. Case Sensitive
"I am a value" | Should MatchExactly "I am" # Pass
"I am a value" | Should MatchExactly "I Am" # Fail

Throw
Checks if expression is thrown
{ foo } | Should Not Throw #Fail
{ $foo = 1 } | Should Not Throw #Pass
{ throw "This is a test" } | Should Throw "This is a
test" #Pass
{ throw "bar" } | Should Throw "This is a test" #Fail
Warning: The input object must be a ScriptBlock, otherwise it is
processed outside of the assertion.

BeNullOrEmpty
Checks values for null or empty (strings).
$null | Should BeNullOrEmpty # Pass
$null | Should Not BeNullOrEmpty # Fail
@() | Should BeNullOrEmpty # Pass
"" | Should BeNullOrEmpty # Pass

http://www.kajbonfils.com/

Created by Kaj Bonfils, www.kajbonfils.com 2016-05-18.
Details taken from: https://github.com/pester/Pester/wiki

Mocking

Mock
This creates new behavior for any existing command within the scope
of a Describe or Context block. The function allows you to specify a
script block that will become the command's new behavior.
-CommandName
The name of the command to be mocked.
-MockWith
A ScriptBlock specifying the behavior that will be used to mock
CommandName. The default is an empty ScriptBlock.
-Verifiable
When this is set, the mock will be checked when Assert-VerifiableMocks
is called.
-ParameterFilter
Limit mocking behavior only to usages of CommandName where the
values of the parameters passed to the command pass the filter.
This ScriptBlock must return a boolean value.
Examples
Mock Get-ChildItem { return @{FullName =
"A_File.TXT"} } -Verifiable -ParameterFilter { $Path
-and $Path.StartsWith($env:temp) }

Assert-VerifiableMocks
Checks if any Mock marked with -Verifiable has not been invoked. If so,
this will throw an exception

Assert-MockCalled
Checks if a Mocked command has been called a certain number of
times and throws an exception if it has not.

-CommandName: The mocked command whose call history should be
checked.
-Times: The number of times that the mock must be called to avoid an
exception from throwing.
-Exactly: If this switch is present, the number specified in Times must
match exactly the number of times the mock has been called.
Otherwise it must match "at least" the number of times specified. If the
value passed to the Times parameter is zero, the Exactly switch is
implied.

-ParameterFilter: An optional filter to qualify which calls should be
counted. Only those calls to the mock whose parameters cause this
filter to return true will be counted.
-Scope: An optional parameter specifying the scope in which to check
for calls. By default, Assert-MockCalled will find calls to the mocked
command in the current Context block, or the current Describe block.
Valid values are Describe, Context and It. If you use a scope of Describe
or Context, the command will identify all calls to the mocked command
in the current Describe / Context block, as well as all child scopes of
that block.
Examples

Assert-MockCalled -CommandName Set-Content -
Times 2 -ParameterFilter { $path -eq
"$env:temp\test.txt" }

Pester Cheat Sheet by Kaj Bonfils is licensed under a Creative Commons
Attribution 4.0 International License.

Please feel free to send suggestions for updates and changes on
@kajbonfils

For more tips, tools and videos, please visit my blog at:
https://www.kajbonfils.com/

Based on Pester 3.0
https://github.com/pester/Pester/wiki/

http://www.kajbonfils.com/
https://twitter.com/kajbonfils
https://www.kajbonfils.com/
https://github.com/pester/Pester/wiki/

